
AD-A157 430 NASSACHUSETTS INST OF TECH CAMBRIDGE LAD FOR COMPUTE--ETC F/0 12/1
ON THE EXPRESSIVE POWER OF DYNAMIC LOGIC. II.(U)
AUG 61 J Y HALPERN NSF-MCSGO-10707

NCLASSIFIED MZT/LCS/TM-204
M.rnnnunu/l///uuu

k IIIII. 12.

MICROCOPY RESOLUTION IESI CHARI

NA)ON4L BULRI All W1 AN[A' 111- A

0 LABRATOR FORMASSACHUSETTSo AORAOR ORINSTITUTE OF
M' COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-204

ON THE EXPRESSIVE POWER OF DYNAMIC LOGIC, I

Joseph Y. Halpern

August 1981

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

81 10 26 098

-4 .- -

On Ae Expressive Power of Dynamic Logic, 11

t I Joseph Y. THalpern I'

M. '' taboratory for Computer Science and

Aiken Computation Laboratory, Harvard University
/

1 . \ Introduction

In this paper we study the expressive power of nondeterminism in

dynamic logic. In particular, we show that first order regular dynamic logic

without equality (hereafter abbreviated DL) is more expressive than its

deterministic counterpart (DDL). This result has already been shown for the
quantifier-free case [NI" V, and for the propositional c: Nf . erman and

Tiuryn have recently extended the present result to the case with equality. By

contrast, Meyer and Tiuryn have shown in [Ml] that in the r.e. case,

deterministic and nondeterministic dynamic logic coincide.

The proof hinges on showing that in a precise sense a deterministic

regular program cannot search a full binary tree. Because of this, the truth

of a first-order DDL formula, even with first-order quantification, cannot

depend on every value in a full binary tree. From this it will follow that DDL

is less expressive than DL. The kernel of the proof presented here can already

be found in [HR].

2. Syntax and Semantics
We give a brief description of the syntax and semantics of DL and DDL.

The reader is referred to [Har] for more details.

Syntax: Just as in first-order predicate calculus, we have predicate symbols

P, Q, ... and function symbols f, g, ... , each with an associated arity,

[/
-I (

__ _ _

2

variables x, y, z, xo, xl, ... , and logical symbols 3, -, V, (, and). DL

also uses a few special symbols in programs, namely ;1 , ?U, , and o

(pronounce "diamond").

Terms are formed exactly as in first-order predicate calculus.

Formulas and programs are defined inductively.

(a) Any formula of first-order predicate calculus is a formula.

(b) <variable> = (term> is a (basic) program.

(c) If p, q are formulas, and a, b are programs, then

pVq, -p, 3xp, and (a>p are formulas, and

a;b, aUb, and a* are programs.

(d) If p is a quantifier-free formula of predicate calculus, p? is a

program.

V as an abbreviation for -3-; similarly, [I (pronounced "box") is

an abbreviation for -- '.

Semantics- A state (l,s) consists of two parts: I is a structure which

consists of a domain, dom(l), and an interpretation of all the function and

predicate symbols over this domain, and s is a valuation which assigns values

in the domain to all the variables.

Given a structure I, pl is a mapping from programs to binary

relations on valuations which describes the input-output behavior of programs

in structure I, and wI i a ajping from foiu las to sets of valuations,

the ones valuations wher. the formntlas is "true". We usually write (I,s) 1= p

instead of s C wi(p). We define both p, and w, inductively.

(a) For p a formula of first-order predicate calculus, (i,s) I= p is

defined as usual.

(b For basic programs of the form x=t, t a term, pl(X=t) =

((s,s~x/d])l where d C dom(l) is the value of the term t in (I,s), and dx/d]

BB3.

is the valuation such that s[x/d](y) s(y) if y / x and s[x/d](x) d} / L'.,

(c) For programs a, b and formula p i t " Q .
pl(aUb) pla) U p(b) / ,,

P1(a;b) pe(avi(b) A

j a n)

... "

Pi~a*) : Un> l ...
PJFp?) -z (s,s)l (1,s) I- p) '

(d) For formulas p, q and program a

(Is) t= -p iff (I,s) 0 p

(I,s) I- pVq iff (J,s) 1= p or (I,s) 0 q

(I,s) = :xp iff for some d 4 dom(D (I,s[x/d]) i= p

(I,s) = <a>p iff for some t with (s,t) 4 pj(a) (],t) I- p.

Nondeterminism occurs in DL through the constructs * and U. We can

eliminate the nondeterminism by allowing * and U to appear only in the contexts

p?;a U ';p?;b and

(p?;a)*;-p?,

which we abbreviate respectively as if p then a else b fi and while p do a od.

We leave it to the reader to check that this restriction leaves us with a

deterministic set of programs. The restricted language is called DDL.

3. Motivation from the Propositional Case

This section reviews results from [HR] which provide motivation for the

main result in this paper. While it does provide insight into the ideas, it

can be skipped without loss of continuity. We presume familiarity with the

relevant definitions (see (HR] for more details).

A tree model is one whose graph is a tree. A tree is said to be

sparse if for some polynomial F, there are (F(k) nodes at depth k. In [HR]

it was shown that the truth of a formula of (strict) deterministic PDL depends

,!

I-

4

only on a sparse set of nodes of any tree model. In particular, the proof of

Theorem 4.12 of [HR] can be easily modified to show the following:

Theorem: Suppose M = (S,ir,p) is a tree model (where w assigns meaning to

the primitive formulas, and p assigns meaning to the primitive programs) and

M,s0 I= q, where q is an SDPDL formula. Then there exists a sparse subtree

Sq _ S, such that for any M' : (S,w',p) such that v' and w agree on Sq

(i.e. uISq = w1Sq) we have M',s0 I= q.

As a straightforward application of this theorem, we can show that

SDPDL is less expressive than PDL. Let p be the formula [(AUB)*]P, and let M

r(S,,p) be the binary tree model pictured below, with P true at every state:

A

A BA B

I I I I
I I I I

Clearly M,s0 I- p. But suppose p was equivalent to some SDPDL formula q.

Then let S s S be the sparse subtree of the previous theorem. Let r'(P) = S

and let M' z (S,r',p). Thus wlSq = 1rSq, so by the theorem, M',s0 I q.

But since P is not true at every state in M', we have M',s0 I- -p,

contradicting the equivalence of p and q.

The point here is that we can always "fool" a deterministic formula q

which is supposed to be equivalent to [(AUB)*]P at some state where q did not

look.

4. DDL is less expressive than DL

By analogy to the formula [(AUB)*]P of the previous section, we

consider the formula [(x0 fxUx0=g(x)*]P(x0, which we call p&

We will prove the following

Theorem: pO is not equivalent to any formula of DDL

Corollary: DDL is less expressive than DL.

The rest of this paper is devoted to proving this theorem. The

structures that we use are analogous to the complete binary trees of the

previous section.

Definition: Let Z=10,11 and let S s; Z*. Then Is is the structure with

dom(I S) = Z and f, g, P interpreted as f(w) = wO, g(w) = wl, and P(w) iff

w 0 S. (Thus P(w) holds iff w is not an element of S). All other functions

and predicates in Is are trivial; that is, the functions are projections on

the first variable, and the predicates are identically true. In most of our

applications below, we will take S to be finite. If S is the singleton

consisting of w E V, we write Iw instead of Iw .

We can think of IS as the tree pictured below, where f means "go

right" ai,2 g means "go left".

0

f f
00 01 go

I Al 1

I I I I

t/
!i/

6

We will also consider auxiliary structures which look like countably

many trees of the form Is . More formally, for S* = (50,SIS 2 ,...) define

the structure IS* to have domain VxlN, with f((w,i))=(w,i),

g((w,i))(wli), and P((w,i)) iff w 9 Si. Again all other functions and

predicates are trivial.

Notation- We use s, so , s1, ... for the valuations on structures of the form Is ,

and t, to, ti, ... for valuations on IS*. We reserve so for the valuation

which takes xi to A, (the root of the tree), and to for the valuation which

takes xi to (,i) (the root of the ith tree).

Definition: Given R V V:*(resp. *xIN), let R(n) = {w C R lw S n)

(resp. I(w,i) E RI Iwl _ n)). R is said to be sparse if there is a

polynomial F such that for all n, IR(n) S fin).

Our method of proving the theorem is to show that for a DDL formula q,
there is a sparse set Rq g V, such that if q " P0, then for all w i Rq,

{lw,SO 1= q, which of course is a contradiction since {lw,s) 0 "P0"
We proceed through a series of four lemmas. The first shows the strong

connections between the structures Is and Is*. The idea is that since we

do not have equality in the language, all that matters about a state is the

locations in the tree(s) where P does not hold relative to the values given to

the variables.

Definition: For S g Z and w F *, let w\S = Jul wu f S).

Lemma 1: Let S* % (S0 , 1SS 2 ,...), T (T0 ,T1 ,T2 ,...}. Let s be a valuation on

IS with s(x i) ui, let tI be a valuation on Is with tl(xi) (vJij), and let t2

7

be a valuation on IT* with t2(xi) = (wi,ki). Let q be a quantifier-free DDL

formula with free variables C {xO,...,xkl. Suppose ui\S : vi\Sji (resp. vi\Sji = wi\Tki)

for i = 0,...,k. Then (Isis) I- q iff (Is,,t I) l= q (resp. (Is,,t I) 0 q iff (IT,,t2) 0 q).

Proof By a straightforward induction on the structure of formulas. U

Next, we want to show that without loss of generality we can make

certain special assumptions about DDL formulas interpreted over these structures.

The first is that no function and predicate symbols appear other than f, g, and

P. This follows immediately the fact that all other functions and predicates

get a trivial interpretation in the structures IS. Secondly we can assume

that all basic assignments in programs (the ones of the form x = term) are

actually of the form xi = xj, xi = fRxi), or xi = g(xi), since any assignment

of the form xi = term can be replaced by a sequence of the assignments above;

for example, x, = f0g(x 2)) can be replaced by (xi = x2; x1 fxl); xI f=xl)).

Thirdly, we can assume that the argument to predicate P is always a variable xi;

for example while P(flx)) do a od can be replaced by x2 = fixl); while P(x 2)

do a; x2 = x, od. (We must be careful to ensure that x2 is a fresh

variable which does not appear anywhere else in the DDL formula.) And finally,

we can assume that the formula is of the form QxllQ2x2 ...QkXkq, where q

is a quantifier-free DDL formula, and Qi is either V or 3. This follows

immediately from the following

Lemma 2: If y does not appear in the DDL program a and q is a DDL formula, then

(a) Vy(a>q 5 <a)Vyq

(b) 3y(a)q 2 (a)3yq

8

Proof. We will prove part (a. The proof of Mb is similar and does not

require a to be deterministic.

First note that if y does not appear in a, then a does not affect the

value of y during its computation. Thus if I is any structure, and SI' S2

are any valuations, then for any d 1E dom(I), (s~2 IE p1(a) iff

(sj(y/d],s2 [y/d]) E pe(a). Moreover, since a is deterministic, if

(s1 (y/d],s3) 4E pe(a), then we must have S3 =s 2(y/dJ. Thus we get

iff for some t, (s,t) FE pe(a) and (0,0) Vyq

iff for some t, (s,t) 4E pe4a) and for all d 4E dom(I), (I,tfy/d]) 0 q

iff for all d E dom(fl, (I,s~y/dJ) I= <a>q

iff (I,s) I:- Vy(a>q I

For the next two lemmas we will concentrate on quantifier-free DDL

formulas.

Definition: R g V~ is said to set q for S at s iff for all S' such that

RflS =RflS, we have (15,s) I-- q iff (15',s) I= q. Thus R sets q for S at s

if all that matters for the truth of q in (IS~s) is the value of P on R. We

can similarly define what it means for R ; Z*xIJ to set q for S* at t.

Definition: Let 011 h b the wet of Sequences S* (SO, S1, S2, ..)such

that each Si is empty or is the singleton (wil where Iw~i in.

Lemma 3: Let q be a quantifier-free formula of DDL.

(a) For all finite S ; V, and all valuations s, there is a sparse set RqS5

which sets q for S at s. Moreover, IRq, 05 (n)j cqn and IRq,w,s(n)I S cq(1W12)kn,

where cq is a constant depending only on the formula q, and k is the number of

9

free variables in q.

(b) For all sequences S* = (SO SI, S2 , ...), where each Si c_ Z* is finite,

there is a sparse set Rq,S*,t which sets q for S* at t. Moreover,
[Rq,(0, ..),s(n)j <_. cqn and for S* C *m, Rq,s*,s(n)I < c (m,2)kn, where cq and k

are as above.

Proof Deferred to the appendix.

Note that from Lemma (a) it already follows that p0 is not equivalent

to any quantifier-free DDL formula q. For if q is equivalent to P0, then

(I.,s O I- q. Let w C Z*-Rq 0 1s0 (such a w exists since RqOs0 is sparse). Then

by Lemma (a), (w,SO) I= q. But (lw,S0) p0 , and this contradicts

the equivalence of q and p0.

Definition: For a quantifier-free DDL formula q, let Rq, n = Us efnRqO

and let Rq = {wj (w,i) e Rq,lv4-

Lemma 4: Rq is sparse.

Proof It is sufficient to find a polynomial Fq such that lRq,n(n)l _ Fq(n),

since clearly tRq(n) < IRq,n(n)l. We will do this for the case that the free

variables of q are x0 , x1, x2 . It will be clear that the proof extends to

q's with arbitrarily many free variables.

Note that from Lemma 1, it follows that since the free variables of

q are x0 , X1 , and x2 , Rq,S*,t 0 depends only on S0, S1, and S2. That

is, given another sequence T* = (T0 ,T1,T2,...), if Si = Ti for i = 0,1,2,

then Rq,S*,t 0 2 Rqlr,t. Thus we need only concern ourselves with

elements of On of the form (50 ,SIS 2,01,0,..., which we abbreviate as (S0 S1,S2).

_A.

Call this subset O()

Define an equivalence relation on 4'n(2) via (S01S1,S2) =(T0 ,T1 1T)if
R R We will show that there are less than

Rq,(SOSj,S 2),t0 Rq(T 0,T1 T2),'.
Gq(fl) equivalence classes, for some polynomial G q depending on q. Then we can
take Fq(n) to be cq(n.2)nqn) since by Lemma 3(b) qSSI2) qn)3

for (SO1S1,S2) 6 C ()

We now proceed to count equivalence classes. Note that (w,0,0) NE (0,0.0)

unless (w,)) 4E Rq(0,0 0),t* Similarly for (0,w,0) and (0,0,w).

Thus there are at most l+ncq equivalence classes of the form (w,0,0),

(0^w0), or (0,0,w) in 4'n(2), since IRq(0,),t (n0I Cqfl by Lemma A(b.

Now to get an equivalence class of the form (wlI'w 2, 0) distinct from

those of the form (w,0,0), (0,w,0), or (0,0,w), we must either have

(a) (wpl) E Rq(O000),t, and (w2,2) E Rq,(wl%00)I' or

(b) (w2 ,2) E Rq(0,0,)t and (w i,l) C Rq(0w2 0)t or

(c) (w1 ,l), (w2,2) E Rq,(0,0,0),t0 .

Again, since 1w11, 1w21 n, it is easy to check, using Lemma 3(b),

that there < c q (n+2)3n2 new equivalence classes satisfying each of

conditions (a) and (b), and cq2 [12 satisfying condition (c). Thus we

get OWn) new equivalences classes of the form (w1,w2,0), (w1 ,", 2), or

(0,w1 1 w2) for w1, w2 4E MOn. A similar analysis can be used to show we

get "An9 new equivalence classes of the form (w1 ,w2 ,w'j). Thus we get

polynomnially many equivalence classes, as desired. (Similar arguments show

that in general, the polynomial Gq will have degree 0(k2), where k is the

number of variables in q.) U

We are (finally!) ready to prove our theorem. The proof is by

contradiction. Suppose the DDL formula q is equivalent to PO. By Lemma 2 we

can assume q is of the form Qll.. kk' where q' is a quantifier-free

11

formula of DDL. We will assume for ease of exposition that q is of the form

Vxl3x 2 q', where the free variables of q' are x0, xl, and x2, but it

should be clear that the proof will work for arbitrary sequences of quantifiers

and for a q' with arbitrarily many free variables.

Choose w e Z* - Rq, (we can do this since Rq, is sparse). Then

(I(0,w,w),tO) 0 PO

* (I(0,ww),tO) = q (since q is equivalent to 1O)

(l(,ww),tO) I Vxl3x 2 q'

* V(wl,il)3(w2 ,i2)(l(,w,w),tO[xl/(wl,l),x2/(w 2 ,i2)]) I- q'

: Vw 3 w2((,Wl\ww2\w),t) I q' (this follows from Lemma 1)

* Vw13 w2((w,wI\ww 2 \w),tO. 0 q'

(since (0,wl\w,w2 \w) E flwi(2) and w 9 Rq, so (w,0) 9 Rq. iw

* Vwl3w 2(Iw,s0xI/wl,x 2/w 2]) I- q' (by Lemma 1 again)

* (Iw,SO) I-- Vxl3x2 q'

* (Iw,sO) '=q

S 0w,SO P (since q is equivalent to pO) .

But this is clearly a contradiction, since U1w'S) I P0"

This completes the proof of the theorem. I

12

Appendix

Proof of Lemma 3:

We will prove part (a). The proof of b) is similar. We first need to

simplify the form of quantifier-free DDL formulas.

Definition: We call a quantifier-free formula elementary if it is of the form

(alit...{aklkP, where {}i is either < or [] and p is either P(x) or "P(x).

Lemma- Any quantifier-free DDL formula can be written in "disjunctive normal

form", i.e. as a disjunction of a conjunction of elementary formulas.

Proof The proof is by induction on the structure of formulas, and follows

immediately from the fact that for DDL programs a,

{a}(pAq) - {alp A {a~q and

{a)(pVq) F Jalp V {a)q. I

It clearly suffices to prove Lemma 3(a) for elementary formulas, since

for an arbitrary quantifier-free DDL formula q, we can take Rq,S, s = UiRqiS,s,

where the qi range over the elementary formulas that appear in the "disjunctive

normal form" of the previous lemma.

Now the truth of an elementary formula q = (all...{am~p with free

variables c , i (IS,s) depends only on the truth values of P at

thosew values in V: assigned to xl,...,xk as we run the progiam al;...;am

starting in state (Iss) (remember we are assuming that all tests are of the

form P(x i) or " i)).

Since al;...;am is a regular program, it can be represented as a

finite flowchart. We can construct 'a finite state register machine with an

oracle for S which acts as an interpreter for this program. The number of

13

states in the machine depends only on al;...;am and hence on q. The machine

will have k registers, one for each of the variables appearing in the program.

The registers are initialized to S(Xl),...,S(xk) In what follows, we will

delibherately confuse xi with "the contents of register i".

Claim: The machine only consults the oracle on a sparse set of values.

Once we prove this claim we are done. We simply take this sparse set

to be Rq,S's and note that if S' is any set with S' n RqS s = S n Rq,S,s

the ,Machine with oracle S' would go through the same sequence of states as the

one with oracle S. Thus (Is,s) q iff (IS.,s) I- q. (The formal proof

04f this Li;st statement is a messy but straightforward induction on the

structure of q.)

To prove the claim, we first define an equivalence relation on tuples

(w .. ,wk) via (wl,...,wk) (ul...uk) iff wi\S = ui\S for i = 1,...,k.

Note that since S is finite, wi\S = 0 for all but finitely many w e Z*, so

there are only finitely many equivalence classes. Note also that the equivalence

cl;as7 and the state of the machine completely determine the sequence of basic

instructions (those of the form xi = xj, xi = fxi), or xi = g(xi))

performed by the machine, since for any two equivalent tuples the oracle for S

always gives the same answers at every step in the computation.

Thus, if the machine does not halt after a finite number of steps,

there must be two distinct times in its computation when it is in the same

state and the contents of the registers are in the same equivalence class.

Hence, if the machine does not halt after a finite number of steps, it must

repeat the same sequence of basic instructions over and over again; i.e. the

instruction sequence is of the form a;bO, where a and b are sequences of

basic instructions.

jIV

14

Suppose the contents of the registers at some point in time are

(x?,... ,xk) and let (xvn,...,x") be the contents of the registers after

we run bm from this point. It is easy to see that there exists Ji < k and

wi E Z* (which depend only on b) such that

Sx 0 w. for i = 1,...,k.Ji I
Now suppose jl,..,jk are all distinct. (The argument for the

general case is similar.) Then it is easy to see that for some ui f Iwl,...,wkjk ,

Pui, and thus

If we let Y1,"'YN be the contents of the registers at all times as we

run bk' starting from (x,...x0, we can again find vl,...,vN E Z;,

ml,...,mN _ k such that

SX0V i = I,...,N.Yi

Thus, at any time as we run b" on initial input (x8,...xk the contents

of the registers g {xgi(ui)hvil i = 1,...,N, h 0). Call this set A.

Note that for any n, A has at most N elements of length n (at most one of the

form x0 (u)hv • for each i 1,...,N). If we let B = 1contests of the registers atm i

all times as we run a on input (s(Xo),...,s(xk))), let (xk,...,x0) be the

contents of the registers after running program a on input (s(x0,...,S(xk)),

and take Rq,S,s = A U B, we are done.

Note that N _ the number of steps (assignments) performed by bk! = k!

× (the number of steps purfomed by program b), while 113 _< the number of

steps performed by program a. Moreover, the number of steps performed by a;b

is the number of equivalence classes. E' S = 0, there is only one

eqitivalence class, and if S = (w), there a-e at most (1wl+2)k equivalence

classes, since there are jwv.2 values for u\w. These observations give us the

second half of Lemma 3(a). U

15

Acknowledgments

I would like to thank Albert Meyer for suggesting the problem, Karl

Winklmann for his initial insights, and Neil Immerman and Mike Sipser for

pointing out why some of my ideas led to dead ends.

This research was partially supported by a grant from the N!,';,nal

Sciences and Engineering Research Council of Canada and by NSF Grant McSgo-10707.

References

(HR] J. Y. Halpern and J. Reif, The Propositional Dynamic Logic of

Deterministic, Well-Structured Programs, MIT/LCS/TM-198, March, 1981; to

appear in "Proceedings of the 22nd Annual Symposium on the Foundations of

Computer Science", 1981.

[Har] D. Harel, First-Order Dynamic Logic, Lecture Notes in Computer

Science, 68, Springer-Verlag, N.Y., 1979.

[Ml] A. R. Meyer and J. Tiuryn, The equivalence of several logics of

programs, to appear.

(MW) A. R. Meyer and K. Winklmann, On the expressive power of dynamic logic,

MIT/LCS/TM-157, February, 1980. A preliminary report appears in "Proceedings

of the l1th Annual ACM ConferenGe on Theory of Computing", May, 1979.

1.t

DATE

1-4

